

CDF Computing

Glasgow

Toronto

UC San Diego

- Current Scale
- Plans for future
- What we've done
- What we want to do

All MC done at remote sites, and 2 remote CAFs

CDF's Current Offline Scale

- 685M unique events have been processed
- ◆ 747 TB on tape, 4 copies x 250kB/event + MC
- 48TB/day moved, at 900MB/sec sustained
- CDF has pioneered commodity file servers
- We have deployed 1382 CPUs and 318 TB of disk in our PC farms, CDF CAF is a big success!

Plans for the Future

- Strong support from IFC & Bird reviews
- PAC agrees that plans for expanded DAQ bandwidth is well motivated by the physics
- Held a global computing workshop in Florida.
 A big success! 2nd round of CAF's by May 1st
- We are aiming for ~7 sites with ~200CPUs each ~1400 CPUs at FNAL for users plus ~500 CPUs for reconstruction

SAM is the enabling technology

http://cdfkits.fnal.gov/DIST/doc/DCAF/web/Florida_workshop.html

Karlsruhe

Barcelona

Japan

Taiwan

What We've Done

- Reconstruction passes(all data, 3 times):
 - 4.8.4 ran non-optimized, no forward tracking or IMU
 - 5.1.0 optimized, alignment improved, beamline used
 - ◆ 5.3.0 uses final CAL calib., high forward tracking eff.
 - Output of production is immediately useful
- Major upgrade of Simulation
 - Detector geometry description, drift models, parameterized charge deposition models
 - Much wider use of "realistic" simulation
- Split and conquer
 - Run 2 datasets are split into 42 different physics streams (for example hight pt muons = 3M events).
 - This is costly in farms operations but then reprocessing and physics analysis is much more efficient

What we plan to do

- Improve data format further
- Reduce the number of copies of data
- Continue to improve tracking
- Complete migration away from KAI compiler
- Prepare code base for required GRID infrastructure without disrupting physics
- Continue to support core software packages
- Improve support for analysis packages eg.
 Stntuple, Btag*. They should be validated for frozen releases as they mature.

Backup Slides Output Event Size

CPU time/event

CPU vs. Luminosity

CDF Detector

